

The group G is isomorphic to the group labelled by [18, 4] in the Small Groups library.

Ordinary character table of $G \cong (C3 \times C3) : C2$:

	1a	3a	3b	3c	3d	2a
χ_1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1
χ_3	2	2	-1	-1	-1	0
χ_4	2	-1	2	-1	-1	0
χ_5	2	-1	-1	2	-1	0
χ_6	2	-1	-1	-1	2	0

Trivial source character table of $G \cong (C3 \times C3) : C2$ at $p = 3$:

Normalisers N_i	N_1		N_2		N_3		N_4		N_5		N_6	
p -subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4	P_5	P_6	P_1	P_2	P_3	P_4	P_5	P_6
Representatives $n_j \in N_i$	1a	2a										
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	-1	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	1	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	1	3	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	3	-1	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	1	0	0	3	1	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	0	0	3	-1	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	3	1	0	0	0	0	3	1	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	0	0	0	0	3	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	3	1	0	0	0	0	0	0	3	1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	3	-1	0	0	0	0	0	0	3	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1

$$P_1 = \text{Group}([()]) \cong 1$$

$$P_2 = \text{Group}([(1, 3, 2)]) \cong C3$$

$$P_3 = \text{Group}([(4, 6, 5)]) \cong C3$$

$$P_4 = \text{Group}([(1, 3, 2)(4, 6, 5)]) \cong C3$$

$$P_5 = \text{Group}([(1, 3, 2)(4, 5, 6)]) \cong C3$$

$$P_6 = \text{Group}([(1, 3, 2), (4, 6, 5)]) \cong C3 \times C3$$

$$N_1 = \text{Group}([(2, 3)(5, 6), (1, 2, 3), (4, 5, 6)]) \cong (C3 \times C3) : C2$$

$$N_2 = \text{Group}([(2, 3)(5, 6), (1, 2, 3), (4, 5, 6)]) \cong (C3 \times C3) : C2$$

$$N_3 = \text{Group}([(2, 3)(5, 6), (1, 2, 3), (4, 5, 6)]) \cong (C3 \times C3) : C2$$

$$N_4 = \text{Group}([(2, 3)(5, 6), (1, 2, 3), (4, 5, 6)]) \cong (C3 \times C3) : C2$$

$$N_5 = \text{Group}([(2, 3)(5, 6), (1, 2, 3), (4, 5, 6)]) \cong (C3 \times C3) : C2$$

$$N_6 = \text{Group}([(2, 3)(5, 6), (1, 2, 3), (4, 5, 6)]) \cong (C3 \times C3) : C2$$