

The group G is isomorphic to the group labelled by [72, 41] in the Small Groups library.

Ordinary character table of $G \cong (C3 \times C3) : Q8$:

	1a	4a	2a	4b	4c	3a
χ_1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	1
χ_3	1	-1	1	1	-1	1
χ_4	1	1	1	-1	-1	1
χ_5	2	0	-2	0	0	2
χ_6	8	0	0	0	0	-1

Trivial source character table of $G \cong (C3 \times C3) : Q8$ at $p = 2$:

Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6
p -subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4	P_5	P_6
Representatives $n_j \in N_i$	1a	3a	1a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6$	8	8	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	8	-1	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	4	4	4	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	0	0	2
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1

$$P_1 = \text{Group}([()]) \cong 1$$

$$P_2 = \text{Group}([(2, 4)(3, 6)(5, 9)(7, 8)]) \cong C2$$

$$P_3 = \text{Group}([(2, 4)(3, 6)(5, 9)(7, 8), (2, 3, 4, 6)(5, 7, 9, 8)]) \cong C4$$

$$P_4 = \text{Group}([(2, 4)(3, 6)(5, 9)(7, 8), (2, 8, 4, 7)(3, 9, 6, 5)]) \cong C4$$

$$P_5 = \text{Group}([(2, 4)(3, 6)(5, 9)(7, 8), (2, 9, 4, 5)(3, 7, 6, 8)]) \cong C4$$

$$P_6 = \text{Group}([(2, 4)(3, 6)(5, 9)(7, 8), (2, 3, 4, 6)(5, 7, 9, 8), (2, 8, 4, 7)(3, 9, 6, 5)]) \cong Q8$$

$$N_1 = \text{Group}([(2, 8, 4, 7)(3, 9, 6, 5), (2, 3, 4, 6)(5, 7, 9, 8), (2, 4)(3, 6)(5, 9)(7, 8), (1, 2, 4)(3, 5, 7)(6, 8, 9), (1, 3, 6)(2, 5, 8)(4, 7, 9)]) \cong (C3 \times C3) : Q8$$

$$N_2 = \text{Group}([(2, 4)(3, 6)(5, 9)(7, 8), (2, 3, 4, 6)(5, 7, 9, 8), (2, 8, 4, 7)(3, 9, 6, 5)]) \cong Q8$$

$$N_3 = \text{Group}([(2, 3, 4, 6)(5, 7, 9, 8), (2, 4)(3, 6)(5, 9)(7, 8), (2, 5, 4, 9)(3, 8, 6, 7)]) \cong Q8$$

$$N_4 = \text{Group}([(2, 8, 4, 7)(3, 9, 6, 5), (2, 4)(3, 6)(5, 9)(7, 8), (2, 3, 4, 6)(5, 7, 9, 8)]) \cong Q8$$

$$N_5 = \text{Group}([(2, 9, 4, 5)(3, 7, 6, 8), (2, 4)(3, 6)(5, 9)(7, 8), (2, 3, 4, 6)(5, 7, 9, 8)]) \cong Q8$$

$$N_6 = \text{Group}([(2, 8, 4, 7)(3, 9, 6, 5), (2, 3, 4, 6)(5, 7, 9, 8), (2, 4)(3, 6)(5, 9)(7, 8)]) \cong Q8$$